Viquiprojecte:CEPA Sa Pobla/ESPA/Matemàtiques/Matemàtiques 2.2/Unitat 2. Funcions/Conceptes de funcions
Observa
[modifica]Observa la taula següent:
Temps (min) | Distància (m) |
---|---|
0 | 0 |
1 | 200 |
2 | 300 |
3 | 200 |
4 | 80 |
5 | 20 |
Inteta contestar les preguntes següents:
- 1. A la primera columna hi ha valors repetits que tenguin dos valors diferents a la segona columna?
- 2. A la primera columna hi ha valors diferents que tenguin un mateix valor a la segona columna?
A continuació, les respostes.
No, tots els valors de la primera columna són diferents. |
Sí, per exemple els valors 1 min i 3 min es corresponen amb una mateixa distància de 200 m |
Propietat de les funcions
[modifica]A la taula de valors anterior podem observar un fet: que cada fila té un valor diferent per al temps, és a dir, no hi ha valors repetits en el temps i que corresponguin a dos valors diferents amb la distància. Aquesta propietat se sol enunciar de la forma següent:
PROPIETAT DE LES FUNCIONS
A cada valor de la variable independent li correspon com a molt un valor de la variable dependent.
Per un altre costat, notem que l'expressió "com a molt" inclou la possibilitat que hi hagi valors de la variable inepdenent que no tenguin cap valor definit a la variable dependent. Per exemple, per al temps 10 no tenim dades de distància. Això és perfectament possible perquè ens podem haver aturat de registrar o no ens interessin aquests valors. Però la PROPIETAT DE LES FUNCIONS continua complint-se. Hi insistirem més envant quan hàgim de definir el concepte de domini.
Exemples
[modifica]Corresponen les taules de valors següents a funcions?
Exemple 1
x | y |
---|---|
1 | 20 |
2 | 40 |
3 | 60 |
4 | 80 |
5 | 100 |
Exemple 2
x | y |
---|---|
3 | 5 |
6 | 5 |
9 | 5 |
12 | 5 |
15 | 5 |
Exemple 3
x | y |
---|---|
1 | ND |
2 | 10 |
3 | 12 |
4 | ND |
5 | 16 |
ND: valor no definit.
Exemple 4
x | y |
---|---|
-5 | 21 |
-2 | 44 |
0 | 68 |
3 | -80 |
6 | ND |
ND: valor no definit.
Exemple 5
Distància (m) | Temps (min) |
---|---|
0 | 0 |
200 | 1 |
300 | 2 |
200 | 3 |
80 | 4 |
20 | 5 |
És la taula d'abans però amb les columnes intercanviades.
Per a les solucions seleccionau el requadre gris:
Els exemples 1, 2, 3, 4 corresponen a funcions. L'exemple 5 no correspon a una funció perquè hi ha dues files amb el mateix valor de distància, 200, però lligades a dos valors de temps diferents, 1 i 3.
Notació
[modifica]Si a la taula li deim F, es defineix una notació especial per indicar que dues dades estan associades.
Aquesta notació significa que un valor de la variable independent està associat amb un valor de la variable dependent i que la relació que lliga un amb l'altre s'anomena
Si utilitzam aquesta notació amb qualsevol de les files de la taula obtenim el següent:
Exemples
[modifica]Seguint amb els mateixos exemples 1, 2, 3 i 4, què valdrien els resultats dins els requadres grisos. Seleccionau cada requadre per veure la solució.
Exemple 1
Calcula:
- 20
- 40
- 60
- 80
- 100
Exemple 2
Calcula:
- 5
- 5
- 5
- 5
- 5
Exemple 3
Calcula:
- No existeix
- 10
- 12
- No existeix
- 16
Exemple 4
Calcula:
- 21
- 44
- 68
- -80
- No existeix
El concepte de funció matemàtica
[modifica]Ara estam preparats per definir una funció de forma molt més general.
Una funció és una relació entre dues variables que complesqui la PROPIETAT DE LES FUNCIONS, és a dir, per a cada valor de la variable independent hi ha com a molt un valor a la variable dependent.
Com veurem més envant, les funcions no sempre tenen el seu origen a una taula de valors. També poden provenir d'un gràfic o d'una fórmula.
Allò que no són funcions
[modifica]No totes les taules donen lloc a una funció
Per exemple,
x | y |
---|---|
0 | 0 |
200 | 1 |
300 | 2 |
200 | 3 |
80 | 4 |
20 | 5 |
no és una funció perquè el valor 200 de la variable Distància va associat a més d'un valor diferent de la variable Temps, com són 1 i 3.
Imatges
[modifica]Recordem que cada valor pot correspondre a un únic valor de de la variable dependent i que aquest fet es denota com . Aleshores el valor rep el nom de imatge de . I de fet també es pot veure com . Amb l'exemple del temps i la distància anterior, què serien les imatges d'un valor qualsevol, per exemple 1?
- La imatge de 1 és 200 perquè el valor 1 de la variable independent Temps va lligat al valor 200 de la variable dependent Distància.
- Si és el nom d'aquesta funció, podem escriure per referir-nos a la imatge de 1.
- També podem escriure
Exemples:
- , que és el mateix que dir que 200 és la imatge de 1.
- , que és el mateix que dir que 300 és la imatge de 2.
- , que és el mateix que dir que 200 és la imatge de 3.
Observem que arran de la PROPIETAT DE LES FUNCIONS, la imatge d'un cert valor només podrà ser un únic valor. No té sentit que escrivim diversos resultats diferents per a la imatge d'un valor.
No obstant, sí que hi pot haver imatges repetides que corresponguin a dos valors distints de la variable independent, com passa amb 1 i 3, que tenen tots dos la mateixa imatge 200.
Anti-imatges
[modifica]Si abans partíem d'un valor de la variable independent per obtenir un valor de la variable dependent, també interessa fer el procés a la inversa, és a dir, poder partir d'un valor i calcular quin podrà ser el valor . A aquest valor cercat l'anomenam anti-imatge, amb el prefix "anti" perquè correspon al procés invers de cerca. Vegem amb l'exemple que hem treballat fins ara.
Temps (min) | Distància (m) |
---|---|
0 | 0 |
1 | 200 |
2 | 300 |
3 | 200 |
4 | 80 |
5 | 20 |
Esbrina tu mateix
Respon aquestes 4 preguntes:
- Quina és la anti-imatge de 300? Cercam el valor 300 dins la variable dependent Distància. El 300 apareix només a una fila. I en aquesta única fila, 300 va lligat al valor 2 a la variable independent. Per tant, la anti-imatge de 300 és 2.
- Quina és la anti-imatge de 80? Cercam el valor 80 dins la variable dependent Distància. El 80 apareix només a una fila. I en aquesta única fila, 80 va lligat al valor 4 a la variable independent. Per tant, la anti-imatge de 80 és 4.
- Quina és la anti-imatge de 200? Resulta que a la taula n'hi ha dos, que són 1 i 3. Qualsevol d'aquests valors va lligat a 200. Aleshores tant 1 com 3 són anti-imatges de 200.
- Quina és l'anti-imatge de 50? Per molt que cerquem a la taula, no hi ha cap valor de Temps lligat al 50. Per tant, no hem trobat res. Aleshores la anti-imatge de 50 no existeix.
En conclusió, el procés de partir d'un valor i cercar les seves anti-imatges pot donar tres tipus de situacions:
- Que hi hagi un únic valor, com per exemple amb el 300
- Que n'hi hagi més d'un, com per exemple amb el 200.
- Que no hi hagi cap valor, com per exemple amb el 50.
Les anti-imatges se denoten amb l'expressió següent:
Observem el superíndex que no expressa una potència sinó una forma d'indicar el procés invers de cerca.
Com podríem escriure els resultats trobats fins ara?
- o també
Una forma alternativa d'expressar l'última situació és dient simplement que no existeix la anti-imatge de 50.